In silico comparative analysis of LEA (Late Embryogenesis Abundant) proteins in Brachypodium distachyon L
نویسندگان
چکیده
The Late Embryogenesis Abundant (LEA) proteins in plants are basically related with water deficiency. Recent studies showed that LEA proteins might be molecular chaperones regulating many physiological functions. In this study, LEA proteins were analyzed in model grass Brachypodium distachyon L. The data represented here may help to further analyze the LEA genes in model grass Brachypodium in order to understand their functions especially under conditions of water deficiency and/or other physiological mechanisms. By using the Pfam database, proteins containing at least one LEA conserved repeat (LEA2, LEA3, LEA4, LEA5, and LEA6) were classified as LEA family members. According to these results, 36 LEA proteins were identified in B. distachyon. LEA2 repeat was found as the dominant protein among 28 members followed by LEA3 (5 members). Physicochemical analysis showed that pI values and GRAVY index ranged from 4.40 to 11.1 and 0.48 to -1.423, respectively. Many LEA proteins were considered as basic character (26 members, 72.2%), while 10 proteins (27.8%) were in acidic form. Moreover, GRAVY index revealed that 19 of the 36 sequences were considered hydrophobic (52.8%) while others were hydrophilic (47.2%). Comparative phylogenetic analysis revealed that BdLEA proteins fall into eight subgroups. They were basically divided into two main groups. Chromosomal distribution of LEA genes was determined and segmental and tandem duplications were found in eight genes which may cause expansions of LEA genes through the Brachypodium genome. These results can be helpful for the further functional analysis of LEA proteins in Brachypodium.
منابع مشابه
Genome-Wide Identification, Characterization, and Stress-Responsive Expression Profiling of Genes Encoding LEA (Late Embryogenesis Abundant) Proteins in Moso Bamboo (Phyllostachys edulis)
Late embryogenesis abundant (LEA) proteins have been identified in a wide range of organisms and are believed to play a role in the adaptation of plants to stress conditions. In this study, we performed genome-wide identification of LEA proteins and their coding genes in Moso bamboo (Phyllostachys edulis) of Poaceae. A total of 23 genes encoding LEA proteins (PeLEAs) were found in P. edulis tha...
متن کاملSpatial Distribution of Selected Chemical Cell Wall Components in the Embryogenic Callus of Brachypodium distachyon
Brachypodium distachyon L. Beauv. (Brachypodium) is a species that has become an excellent model system for gaining a better understanding of various areas of grass biology and improving plant breeding. Although there are some studies of an in vitro Brachypodium culture including somatic embryogenesis, detailed knowledge of the composition of the main cell wall components in the embryogenic cal...
متن کاملPrediction of functions for two LEA proteins from mung bean
LEA (late embryogenesis abundant) proteins are associated with tolerance to water stress resulting from desiccation and cold shock. Although various functions have been proposed to LEA proteins, their precise role is not fully defined. In silico analysis of the amino acid sequence of two LEA proteins (early methionine-labeled Vigna, EMV) from the tropical legume crop, Vigna radiata identified a...
متن کاملThe ubiquitous distribution of late embryogenesis abundant proteins across cell compartments in Arabidopsis offers tailored protection against abiotic stress.
Late embryogenesis abundant (LEA) proteins are hydrophilic, mostly intrinsically disordered proteins, which play major roles in desiccation tolerance. In Arabidopsis thaliana, 51 genes encoding LEA proteins clustered into nine families have been inventoried. To increase our understanding of the yet enigmatic functions of these gene families, we report the subcellular location of each protein. E...
متن کاملUses of Phage Display in Agriculture: Sequence Analysis and Comparative Modeling of Late Embryogenesis Abundant Client Proteins Suggest Protein-Nucleic Acid Binding Functionality
A group of intrinsically disordered, hydrophilic proteins-Late Embryogenesis Abundant (LEA) proteins-has been linked to survival in plants and animals in periods of stress, putatively through safeguarding enzymatic function and prevention of aggregation in times of dehydration/heat. Yet despite decades of effort, the molecular-level mechanisms defining this protective function remain unknown. A...
متن کامل